
Zest: REST over ZeroMQ
John Moore, Andrés Arcia-Moret,
Poonam Yadav, Richard Mortier

University of Cambridge
Cambridge, UK

Anthony Brown, Derek McAuley,
Andy Crabtree, Chris Greenhalgh

University of Nottingham
Nottingham, UK

Hamed Haddadi
Imperial College

London, UK

Yousef Amar
Queen Mary University

London, UK

Abstract—In this paper we introduce, Zest (REST over Ze-
roMQ), a middleware technology in support of an Internet
of Things (IoT). Our work is influenced by the Constrained
Application Protocol (CoAP) but emphasises systems that can
support fine-grained access control to both resources and audit
information, and can provide features such as asynchronous
communication patterns between nodes. We achieve this by
using a hybrid approach that combines a RESTful architecture
with a variant of a publisher/subscriber topology that has
enhanced routing support. The primary motivation for Zest is
to provide inter-component communications in the Databox, but
it is applicable in other contexts where tight control needs to be
maintained over permitted communication patterns.

I. INTRODUCTION

The goal behind Zest is to utilise middleware to improve on
the features offered by the Constrained Application Protocol
(CoAP) [1], [2] by providing:
• Encryption as standard
• Access control through Macaroons
• Support for auditing communication across nodes
• Support for asynchronous communication between nodes

We chose to build our solution using ZeroMQ1 because of its
flexibility to support different topologies such as brokerless
communication and for its simple abstraction over traditional
TCP sockets. Other reasons we adopted ZeroMQ included
its support for secure connections based on elliptic-curve
cryptography and that it is well supported across a variety
of platforms and programming languages. Zest forms the core
protocol within the Databox project [3], which we envisage
being instantiated in the form-factor of a set-top box or
similar. All components are encapsulated as Docker contain-
ers.2 Databox hosts third-party computations as Apps, while
external devices such as sensors interface to the Databox via
Drivers responsible for interacting with the external device
through reads and writes to an associated store, a light-
weight time-series database. Zest’s requirements therefore are
to support this highly controlled communication model, in a
relatively resource-constrained environment, where operations
must be logged for subsequent audit and where data transfers
should be authenticated and protected in flight. The Databox
communication model not only involves encryption across
communication channels but also requires support for fine-
grained access to resources. We therefore developed the Zest

1http://zeromq.org/
2https://docker.com/

Fig. 1. Databox architecture.

protocol to support these features as standard, including sup-
port for audit information to be pushed to any App permitted
to receive it. Data is isolated within Databox by enforcing
that each Driver may write only to its own Store, and Apps
must request permission on installation to be able to access
a Store. If the user grants permission, the App receives a
set of access tokens (formatted as Macaroons [4]) which it
can subsequently present to the Store to verify its access is
allowed. Data may only be communicated to a third-party
service through an Export Driver, subject to the user granting
appropriate permission when installing the App. Available
Stores are registered in a HyperCat catalogue on installation,
so they can be discovered by other Apps.3 Each store provides
a RESTful API supporting JSON, text and binary data across
the Zest protocol. Underlying storage is implemented using the
Irmin [5] system using a git-structured backend. This supports
a key design goal of Databox, to provide accountability of
data stored and accessed, by using the commit history of
the git-based storage system to provide a detailed account
of all mutations to data. In the remainder of this paper we
discuss related work (§II), detail the Zest protocol (§III) and
architecture (§IV), and conclude (§V).

II. RELATED WORK

A number of alternative technologies exist which can be
used to support an Internet of Things, however, the baseline of

3https://hypercat.io/

our work corresponds to the Constrained Application Protocol
(CoAP) for which the need for integration with enterprise
infrastructure has recently motivated its development over
TCP [6], [7]. The goal of the CoAP standard was to bring
a RESTful experience to the Internet of Things. As such, its
design targets low-end devices including micro-controllers and
it runs over UDP to provide more light-weight communication.
However, the decision to use UDP sometimes introduces
complexity such as when operating over networks that use
NAT or when required to handle large message payloads
efficiently. Upgrading CoAP to TCP required changes to the
protocol structure to, for example, to accommodate reliable
communication. However, complexities remain. The CoAP
standard supports the concept of observing a resource so
that data can be pushed back to client nodes. This type of
interaction is intended to be supported using WebSockets, but
this requires supporting an additional protocol.

The basic concept of supporting a RESTful architecture
using ZeroMQ is not new.4 Novelty in Zest arises from adop-
tion of CoAP’s approach plus additional features introduced
in §I. A number of technologies exist that do not adopt a
RESTful approach but are suitable for building and deploying
IoT solutions. Some make assumptions on the topology that
can be used between communicating nodes and some place
restrictions on the data format used within messages. For
example, MQTT5 is a publisher/subscriber messaging protocol
where clients communicate via a server known as a broker. A
client can connect as either a publisher, subscriber or both
publisher and subscriber. Brokers are topic based. A publisher
will write data for a specific topic which any subscriber of that
topic will receive. Topics can be subscribed to on a hierarchical
basis with optional wildcard filtering within the topic path.
Security can be implemented over TCP using SSL/TLS.

Protocol Buffers6 was created by Google to be used for
machine-2-machine communication between their servers. Its
binary on-the-wire format provided a more light-weight alter-
native to serialising text-based formats such as XML. Google
also developed Cap’n Proto7 as an improvement over Protocol
Buffers in terms of its performance and also included the
addition of RPC capabilities. The serialisation approach of
both Protocol Buffers and Cap’n Proto is similar to that of
Abstract Syntax Notation One (ASN.1) [8] where the protocol
is specified in a platform independent language which needs
to be parsed into target language code with library support that
can generate a binary on-the-wire representation of the data.
Binary protocols are efficient for machine-2-machine commu-
nication, especially when it comes to transferring numeric
data, however, they enforce an on-the-wire format. Using
RPC technologies you are not restricted to use a broker to
mediate communications like MQTT but you still need to
design suitable high-level modes of interaction that end-users
or developers can understand. Choosing the correct technology

4https://rfc.zeromq.org/spec:40/XRAP/
5http://mqtt.org/
6https://developers.google.com/protocol-buffers//
7https://capnproto.org/

0 7 8 1516 31

Code Option
Count

Token Length
(network order)

}
Header

token

· · ·

 Token
(optional)

Option Code 1
(network order)

Length
(network order)

value
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

Option Code n
(network order)

Length
(network order)

value

Options
(optional)

payload

· · ·

 Payload
(optional)

TABLE I
PROTOCOL STRUCTURE

depends very much on the use-case. For example, a traditional
REST model is a good approach for database read and writes
but is not well suited if a client needs to continually poll a
resource to receive an update. Therefore, technologies such as
CoAP and HTTP/2 [9] help address these issues by describing
support to push data back to clients. The Zest protocol takes
a more hybrid approach and borrows from traditional pub/sub
technologies such as MQTT to deploy a broker to handle
such use-cases. The following section will describe the Zest
protocol in more detail.

III. PROTOCOL

Table I shows the structure of a Zest message. A message
must consist of at least a header, however, the token, options
and payload are all optional and depend on the type of message
being sent.

A header is made up of 32 bits. The first 8 bits of the
header are used to set the type of message used being either
a request message or a response message. Table II lists the
possible request and response codes.

The following 8 bits of the header specify how many options
have been encoded. Options are used to configure a message
and provide extra information such as specify the content type
of the payload if one exists. The first 16 bits specify which
option is being encoded based on its value shown in table III.

Options are encoded in a tag, length, value sequence where
the length refers to the number of bytes required to store
the value. The type of value encoded varies depending on
the option. For example, to encode a content format option
requires encoding an unsigned integer representing the content
type such that 0 represents text, 42 represents binary and 50
represents JSON.

The Zest protocol supports POST, GET and DELETE to
a specific endpoint specified through a path. As previously

Type Code Meaning
REQ → 1 GET
REQ → 2 POST
REQ → 4 DELETE
RESP ← 65 Acknowledge (POST)
RESP ← 66 Acknowledge (DELETE)
RESP ← 69 Acknowledge with payload (GET/POST)
RESP ← 128 Bad request
RESP ← 129 Unauthorised
RESP ← 134 Not acceptable
RESP ← 141 Request entity too large
RESP ← 143 Unsupported content format
RESP ← 160 Internal server error
RESP ← 163 Service unavailable

TABLE II
REQUEST AND RESPONSE CODES

code meaning value/type
3 uri host string
6 observe string set to ’data’, ’audit’ or ’notify’

11 uri path string
12 content format unsigned integer based on type
14 max age unsigned integer representing seconds

2048 public key string

TABLE III
OPTION ENCODING

described, each method is configured by setting specific pro-
tocol options as shown in figure IV. The POST method is
used to add data to a resource such as a database or provide
data to update a dashboard. Unlike the CoAP standard, a POST
method can not only acknowledge the status of the request but
can also return a payload of data. A POST response message
might contain an option specifying the content of its payload.
A GET method is used to request data from a resource such as
a database. The GET method has a variant to support observing
a resource. This is used to obtain information suitable for
logging and auditing interaction across a Zest deployment.
Observing a resource sets up a connection to the router
endpoint of a Zest node which remains active until a specific
expiry period is reached as dictated by the max age option.
If the max age option is not provided a default of 60 seconds
is assumed. In addition, a max age value of 0 indicates the
connection should not expire. As with all method calls, their
usage should be controlled through suitably minted access
tokens. The response to a GET method always contains a
payload so must have the content format option set in the
response. Finally, the DELETE method is used to remove data
from a resource such as a database. Note that although the
DELETE request will not contain any payload data it still
requires the content format option to be set to identify the
type of data that will be deleted. A DELETE response has no
options or payload so consists of a header only.

In addition to the standard REST protocol there is a meta-
protocol which is delivered across the router endpoint of a
Zest node. The meta-protocol is a simple character separated
format delivered as the payload of a Zest acknowledgement
to a notification or observation request (see IV for more

Fig. 2. Node interaction across a Zest deployment: Ê Manager connects to
Arbiter to set up permissions for minting tokens, Ë Manager subscribes to
Arbiter to receive audit information, Ì Logger connects to Arbiter to request
audit logging token for Store, Í Logger subscribes to Store using token to
receive audit information, Î Dashboard connects to Arbiter to request data
logging token for Store, Ï Dashboard subscribes to Store using token to
receive copy of data posted, Ð Sensor connects to Arbiter to request token
for posting data to Store, Ñ Sensor posts data to Store using token

details). Observations have 3 formats based on the request:
data, audit, notify. Whereas a notification has a single format.
For example, the result of observing data posted to path
/kv/foo/bar might look like:
t imes t amp # u r i−p a t h # c o n t e n t−f o r m a t # d a t a
1521554211213 / kv / foo / b a r j s o n {”room ” : ” l ou ng e ” , ” v a l u e ” : 1}

Note that the first line contains a comment to represent the
structure and is not included in the protocol. Further details
and examples of the different formats are available online.8

IV. ARCHITECTURE

Figure 2 depicts a simple Zest deployment where a number
of client nodes interact with a server node (store) which has
data storage and retrieval functionality. For example, ZestDB9

is a storage node which provides both key/value and time-
series functionality. Access to this node is controlled through
tokens which need to be obtained from a privileged server node
known as the arbiter. To bootstrap a Zest deployment requires
a single privileged node depicted in Figure 2 as the manager

8https://github.com/me-box/zestdb/tree/master/docs\#observation
9https://me-box.github.io/zestdb/

GET REQ GET RESPONSE POST REQ POST RESP DELETE REQ DELETE RESP
uri path x x x
uri host x x x
content format x x x + x
observe +
max age +
public key +

TABLE IV
OPTIONS PER REQUEST OR RESPONSE: X IS MANDATORY, + IS OPTIONAL

node. The manager node is required to grant permissions on
the arbiter node. This sets up which tokens can be minted and
which nodes can request them. For example, at step Ì the
log node connects to the arbiter to request a token which it
will later present to the store. The architecture is flexible as
it can be connected up in different ways. The sensor node in
this deployment is not receiving any logging data but it could
request this from either the arbiter or store or both provided it
had the required access token. Access tokens are implemented
as Macaroons [4] which are similar to traditional bearer tokens
but allow restrictions (caveats) to be added for delegation. A
Zest deployment must support at least 3 caveats: the REST
method required, the resource path to access and the target
identity of the node which will receive the token. Each server
node in a Zest deployment must also provide a HyperCat to
describe its state. For example, a store will describe what data
sources it currently contains, whereas an arbiter will describe
which nodes have been granted permissions to request tokens.

Observations and Notifications

Observations are used for logging/auditing data flowing
through nodes, whereas notifications are used to support
asynchronous communication between nodes. A Zest node
provides two endpoints. The main endpoint uses a request/re-
ply protocol to support the RESTful interface and is used to
set up communication with the router endpoint, The router
endpoint supports a router/dealer topology in ZeroMQ which
is responsible for pushing data back to clients. A router/dealer
topology in ZeroMQ differs from a traditional publisher/sub-
scriber topology in that it maintains an internal routing table to
ensure data is only routed to a single client connection rather
than broadcast to multiple subscribers. Figure 3 summarises
the sequence involved to set up an observation or notification.
During an observation GET request the key of the server
(e.g. store) is returned to the client node to allow secure
communication to take place. In addition, this exchange also
provides the client node with its unique identity in the form
of a UUID which it is required to present when connecting
to the router endpoint. A notification GET request follows
a similar sequence, however, instead of obtaining a UUID
from the server it generates its own identity in the form of a
callback path for notification responses. Notifications are used
in conjunction with observations and support communication
between two nodes interacting with a Zest store through a
/notification/request and /notification/response path. Data is
communicated through a store using a client/server paradigm

Fig. 3. Sequence to set up an observation or notification.

Fig. 4. Asynchronous communication with a client node talking to server
node through a store acting as a broker.

with the store acting as a broker between the client and server
nodes. A client node can issue a request to a server node which
can obtain the necessary information from an observation to
respond back asynchronously with the result. Within Databox
this allows an application developer to build an app or driver
which uses the services of an existing app. For example, there
may be an existing image processing app which specialises
in offering face detection algorithms and this app has made
this service available within the Databox system. Figure 4
illustrates how a client capturing images is able to send them
to a server node for facial recognition and receive back the
results using the notification system. The intermediary node
(store) acts as a broker between client and server nodes to

facilitate the communication. This takes place over predefined
paths on the broker which means both client and server can
be controlled through access tokens and have no direct way
of communicating with one another. The sequence of steps
involved could be summarised by the following interaction:

1) Server observes requests on broker path
/notification/request/image capture/*

2) Client POSTs image to broker path
/notification/request/image capture/001

3) Server carries out image processing and POSTs result
to broker path
/notification/response/image capture/001

4) Client receives notification containing processed image
through a previously established GET request to path
/notification/response/image capture/001

Note, that steps 1 and 4 translate into the sequence previously
described in figure 3. In this example, the server node is
using a wildcard to accept requests from any path with the
/image capture/ prefix and therefore will accept the client
request of /image capture/001. The Zest protocol does not
enforce a particular naming scheme, so a client is responsible
for generating a unique request path to ensure that a unique
callback is generated, for example, by adding a UUID into the
structure.

V. CONCLUSION

In this paper we presented, Zest, a middleware solution
used in the Databox project. A key design goal of Zest was
to abstract complexities that exist implementing the CoAP
protocol by building on top of ZeroMQ to support both a tradi-
tional REST interface together with additional high-level fea-
tures such as brokering asynchronous communication between
nodes. Access to all resources takes place across paths which
can be controlled through a Macaroon minting process. This
level of access control is valuable to IoT deployments such as
Databox. The work presented in this paper is open-source and
available for download at https://github.com/me-box/zestdb
under an MIT license.

VI. ACKNOWLEDGEMENTS

Work funded by EPSRC grants EP/N028260/1,
EP/M001636/1 and EP/M02315X/1

REFERENCES

[1] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An Application
Protocol for Billions of Tiny Internet Nodes,” IEEE Internet Computing,
vol. 16, no. 2, pp. 62–67, March 2012.

[2] M. Kovatsch, “CoAP for the Web of Things: From Tiny Resource-
constrained Devices to the Web Browser,” in Proceedings of the 2013
ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, ser. UbiComp ’13 Adjunct. New York, NY, USA: ACM,
2013, pp. 1495–1504. [Online]. Available: http://doi.acm.org/10.1145/
2494091.2497583

[3] R. Mortier, J. Zhao, J. Crowcroft, L. Wang, Q. Li, H. Haddadi, Y. Amar,
A. Crabtree, J. Colley, T. Lodge, T. Brown, D. McAuley, and C. Green-
halgh, “Personal data management with the Databox: What’s inside the
box?” in Proc. Cloud Assisted Networking workshop at ACM CoNEXT,
Dec. 12 2016.

[4] A. Birgisson, J. G. Politz, lfar Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with Contextual Caveats for Decen-
tralized Authorization in the Cloud,” in Network and Distributed System
Security Symposium, 2014.

[5] T. Gazagnaire, A. Chaudhry, A. Madhavapeddy, R. Mortier, D. S. adn
D. Sheets, G. Tsipenyuk, and J. Crowcroft, “Irmin: a branch-consistent
distributed library database,” in OCaml User and Developer Workshop,
2014.

[6] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and
B. Raymor, “CoAP (Constrained Application Protocol) over TCP, TLS,
and WebSockets,” Internet Requests for Comments, RFC Editor, RFC
8323, February 2018.

[7] C. Gomez, A. Arcia-Moret, and J. Crowcroft, “TCP in the Internet
of Things: From Ostracism to Prominence,” IEEE Internet Computing,
vol. 22, no. 1, pp. 29–41, Jan 2018.

[8] International Telecommunication Union, “Specification of Abstract Syn-
tax Notation One (ASN.1),” ITU-T Recommendation X.208, 1988.

[9] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” Internet Requests for Comments, RFC Editor,
RFC 7540, May 2015, http://www.rfc-editor.org/rfc/rfc7540.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc7540.txt

