
Towards Cheap Scalable Browser Multiplayer
Yousef Amar, Gareth Tyson, Gianni Antichi

Queen Mary University of London
{y.amar, gareth.tyson, g.antichi}@qmul.ac.uk

Lucio Marcenaro
University of Genova

lucio.marcenaro@unige.it

Abstract—The barrier to entry for the development of indepen-
dent, browser-based multiplayer games is high for two reasons:
complexity and cost. In this work, we introduce and evaluate a
method and library that aims to make this barrier as small as
possible, by utilising appropriate development abstractions and
peer-to-peer communication between players. Our preliminary
evaluation shows that we can lower both the technical develop-
ment overhead, as well as minimise server costs, at no loss to
performance.

Index Terms—peer-to-peer, p2p, browser, multiplayer, game,
networking, development

I. INTRODUCTION

The web browser as a target platform for modern games
has been unpopular due to its limitations, for example lack of
multithreading support. In recent times, developers have been
deploying less and less to the browser. [1], [2] However, as
modern HTML5 APIs such as WebGL and WebAssembly are
beginning to see widespread support in browsers and devices,
there is an opportunity for independent game developers to
rediscover the browser as a serious target for deployment. As
independent developers are more limited when it comes to
labour and resources, many shy away from large-scale, real-
time multiplayer game development.

The most common approach to supporting multiplayer is a
client-server model, where one or more authoritative servers
maintain communication between clients. This holds true for
both browser and non-browser games. This is usually (at least
at first) the least complex solution and fits well within existing
internet architecture and paradigms.

The potential of P2P architectures for game networking has
always been recognised however. These have the capacity to
lower costs for game developers and provide a more reliable
service to the players.

In this work, we introduce a library for easily and scalably
networking players in the browser that was designed with a
games-first approach. Our primary contributions are a method
for scaling efficiently to many players and a library that
allows this to be done in modern web browsers. Solving the
challenges to make a system like ours scalable has historically
not been worthwhile when compared to simply shifting the
development cost to deploying additional servers, and the
browser has only recently become a platform where it is
possible to implement this for with some difficulty. We focus
primarily on Multiplayer Online Battle Arena (MOBA)-style
games (where players communicate with a limited number of

other players at a time) although we aim to support Massively
Multiplayer Online (MMO)-style games (where players could
need to communicate with an unlimited number of players at
at time) in the future.

Further, we present preliminary evaluations of this library
and highlight reductions in complexity and server utilisa-
tion/costs at no cost to game performance.

II. RELATED WORK

Systems such as Kiwano [3], VoroGame [4], and [5] seek
to solve issues of scalability for MMOs. These systems utilise
many of the methods we explore, however they are either
cloud-based or a hybrid of cloud and P2P. We seek to remove
dependency on the cloud as much as possible in order to
hosting costs.

Solipsis [6], [7] was one of the first approaches at pure
P2P architectures for virtual environments. This was taken
further through VON [8] and subsequent work [9]. These
approaches use virtual avatar position data to compute the peer
network topology based on area of interests. Most methods
use Gnutella-like initialisation through distributed hash tables
(DHTs) or similar. Newer methods account for variable spatial
concentration of players by using Voronoi-based or derivative
partitioning schemes. There have been several extensive survey
papers covering these methods [10], [11].

While our proposed method builds on a lot of this past work,
we take it further by allowing arbitrary metrics for computing
ideal topologies. In addition to this, we guarantee that our
peer networks are fully connected and resilient to a certain
extent of link failures. Further, we consider the challenges of
implementation within the browser; past methods have been
platform-agnostic.

III. DESIGN

This section details the design of our library based on our
requirements, as well as detailing and justifying our design
decisions. It is split into and overview and subsections for our
two main solutions for these two goals respectively, and a third
to discuss server-side design.

A. Overview

At the highest level, our goals are to minimise costs that
manifest themselves in server and codebase development and
maintenance. As we minimise maintenance by encapsulating
general and game-specific functionality in our library, the
main requirement in the context of this paper is that our

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Fig. 1. Three networking topologies of interest between servers (rectangles)
and peers/clients (circles) – client-server model (left), hosted P2P (middle),
and full P2P (right)

system significantly reduces server costs and these costs scale
minimally as we increase the number of players.

The majority of traffic that passes through servers in most
games is simply broadcasting information from one client to
one or more other clients. We remove the middleman by
creating a peer network that allows us to broadcast directly
between peers.

What makes our system different from a standard P2P mesh,
is that we also connect the peers in a peer network in such a
way that peers do not have to maintain too many connections,
while at the same time not having to rely on single peers for the
fidelity of the communicated data. Currently, this peer network
topology is coordinated by the signalling server based on the
quality of a connecting between pair-wise peers. We discuss
this in more detail in this section.

B. Reducing server costs

The obvious problem with a completely connected P2P
approach is that it does not scale for N players as well as a
client-server model does, as clients can be resource/bandwidth-
weak in comparison to servers that have the resources to
maintain N connections. We mitigate this by allowing for
alternative peer network topologies (which define how the
peers are connected), such as the middle one in figure 1 where
a peer is designated “host” and acts as a de facto authoritative
server, as opposed to a completely connected topology such
as the right one in figure 1. This limits the server costs of
the game provider to simply acting as a lobby/directory for
finding these rooms/groups, but at the same time, the number
of players that a host can support is more limited than a
standalone server.

A server is still required for signalling purposes to exchange
the information required to establish a connection between
peers. This low-traffic server connection only needs to be
maintained if the peers need to be notified when a new
peer joins their network, which translates to joining their
game room/area/instance/arena/match/etc. Otherwise it can be
severed after a peer network is set up.

C. Reducing code complexity

Our second goal is maximising ease of development and
developer barrier to entry. To do this, we encapsulate all

Fig. 2. An example of a computed MST topology where peers with better
connections (2 and 3) act as supernodes, and with redundancy (1 and 4)

networking functionality behind (i) event emitters and (ii)
shared objects that sync between peers automatically. This
is important because we want to avoid code duplication and
maintaining strongly related code in more than one place.
This is common in client-server applications where changes
to client communication requires changes to server communi-
cation in parallel, and vice versa. With our system, developers
need only maintain peer code.

While figure 1 is simplistic, it alludes to a spectrum between
a topology with the least number of connections possible —
e.g. with a minimum spanning tree (MST) over all peers
— and a completely connected topology where each peer is
connected to every other peer.

As our peer networks should be able to have arbitrary
topologies, it is important that we do not introduce hetero-
geneity between peers in code as this can quickly become
unmanageable. Ultimately, the same peers should be able to
switch between an MST topology and a completely connected
topology without touching the game logic whatsoever.

D. Signalling server

Our P2P approach introduces other non-negligible chal-
lenges. In a client-server context, there is a stark trade-off
between how much game logic the server carries or attests
(which increases server costs) and players’ ability to cheat by
modifying the client. An example of this are games where all
physics simulation is done client-side to minimise lag and a
player can modify a client to manipulate their position and
clip through solids.

In a peer-to-peer context, this problem persists between
peers, however the cost of validating game states falls to the
clients. As no authoritative servers exist, peers have to decide
either manually or autonomously to disconnect and/or blacklist
cheating peers by maintaining an array of IPs of past offenders
seen first-hand.

On the spectrum between MST and completely-connected,
we cannot therefore simply go for MST as it is more efficient.
We must introduce redundant connections for two reasons:
(i) resilience and (ii) accountability. Figure 2 shows a visual
example of this where peer 4 relies on just peer 3 for
updates, as peer 3 has a good connection to the left side
of the network. We add redundancy by connecting 4 to 1
also.

For the first, it is imaginable that a node goes offline for
whatever reason, and a new MST must be computed. To avoid
the overhead and potential lag in repairing the peer network,
redundant connections are an advantage. For the second, if
a peer relies on only one other peer to update their global
game state, that peer can spoof the game state. While every
peer can perform their own validation for impossible game
states, or states that imply cheating, there are edge cases where
this becomes less obvious when a peer receives realistic but
divergent states from two or more other peers.

It is therefore important for the topology to be set up in
such a way that each peer can choose to validate data by
comparing it between more than one source. A peer that is
caught cheating (by e.g. spoofing their in-game position) can
then be blacklisted and the network can sever the connection to
them. We plan to extend our library to allow this by comparing
data across source peers, and flagging peers that diverge from
the majority. Additional validation (such as checking if a
player’s position is changing too fast) is left to the developer
and we provide the API for a peer to blacklist them in that
case.

Finally, we can take advantage of other information for
setting up a peer network topology (the weights for our MST)
to reflect that peers with more resources can take on more
connections. We do this by periodically checking the latencies
between each pair of peers. From this information, we can
optimise peer network topology so that a weak peer does
not inadvertently become a supernode. To minimise code
complexity, we encapsulate this behaviour in the signalling
server.

IV. IMPLEMENTATION

Our peer library and signalling server implementations are
open source under an MIT license and available on GitHub
under yousefamar/p2p-peer and yousefamar/p2p-sig-serv re-
spectively, and the peer library can be installed through NPM
as p2p-peer and used as a Node.js module with common
browser bundlers such as Browserify and Webpack, or as an
ES6 module. Our peer library is 231 SLOC / 7.61 KB of
uncompressed, unminified code, and our signalling server is a
mere 64 SLOC / 1.53 KB, both pure JavaScript.

P2P communication has begun to see widespread support
in modern browsers through WebRTC. While WebRTC was
mainly intended to enable audiovisual communication between
browsers (such as for video chat applications), it can also be
used to communicate arbitrary data. While modern browsers
have had this capability for a while, browser-based games
have not yet seen widespread adoption of WebRTC for P2P
communication between players.

Even outside of games, most applications of WebRTC are
limited to chat applications and specialised use cases such as
for exchanging metadata in the WebTorrent protocol. WebRTC
is not very developer-friendly, and while libraries that simplify
P2P communication exist, these are bare-metal and not aimed
at game development.

We use WebRTC to enable P2P communication between
browsers. Our library exposes a PeerNetwork object which
handles peer connections and emits events based on different
events that happen in the network (such as peers connecting
or disconnecting). We allow arbitrary namespacing through
rooms of which a peer can join multiple.

It also exposes a set of methods that can be called directly
if required. These are:

• signal(event, ...args) – Sends an event and
data to the signalling server

• join(roomID) – Joins a room with a particular ID
• leave(roomID) – Leaves a room with a particular ID
• broadcast(event, ...args) – Sends an event

and data to all connected peers
• async connect(sigServURL) – Connects to a sig-

nalling server
PeerNetwork also has three properties; ownUID which

is the peer’s own UID in the network, an array called peers
which contains instances of Peer for all connected peers, and
an array called rooms which will be explained shortly.

One can .disconnect() from or .send(event,
data) directly to each Peer, and on the other side, peers
will emit events based on what is sent that can be listened to.
These events do not need to be defined anywhere beforehand.

As an added layer of abstraction over network events, each
room contains an eventEmitter syncedData object
which implements an Observer design pattern such that any
changes made to this object (or any nested objects at any
depth) emit an event distinct to a property’s path in this
object. The value, along with the path of the added/modified
property’s path (e.g. .foo.bar) is propagated through the
peer network and all peers in a room can expect to see the
property at that path updated. For added efficiency, we only
broadcast data that has been modified. We also keep track of
which data has been set by which peer for data ownership and
to prevent broadcast storms in the peer network.

Namespacing within the object and how rooms are organ-
ised is left to the developer to define. As mentioned before,
rooms can map directly to an arena instance in a MOBA
context for example. Another possibility is rooms mapping
to a 2D or 3D spatial grid where players join and leave rooms
seamlessly as they navigate through the game environment,
prioritising connections to the players who are closest to them
in the game.

Similarly, rooms can be “nested” into a tree structure for
optimisation purposes, such as for limiting update frequency
for peers that are further away from each other in-game (e.g.
position updates) creating network Levels of Detail (LODs).
This is especially powerful in an MMO context.

While the organisation of rooms is left to developers, and
the current abstractions are not just game-centric, we plan to
provide example code for the most common use cases such as
these. We also plan to survey the most common kinds of data
transmitted in networked browser games (e.g. position updates
vs events like jumping) and build functionality for doing this
seamlessly.

0

25

50

75

2 4 6 8
Number of Peers/Clients

M
e
a
n
 S

e
rv

e
r

T
ra

ff
ic

 (
K

B
/s

)

Implementation

Client−Server
P2P (ours)

Fig. 3. Mean server network traffic (0.95 confidence interval) against number
of clients/peers for a traditional client-server model versus our optimised P2P
version

V. EVALUATION

This section describes a simple evaluation of our method
and library. Our aim is to demonstrate how we achieve sig-
nificant reductions in server traffic, thereby lowering required
bandwidth and sever costs.

A. Setup and Method

We deploy up to eight client/peers and two servers. The first
server acts as a signalling server for the P2P implementation,
and the second exposes a WebSocket endpoint that allows
clients to broadcast messages to other clients in the same room
through the server.

The clients/peers then make use of our library to set a
random floating point number on a set room’s syncedData
object every 100 milliseconds. Our library propagates these
values through the network.

We use nethogs to then measure the traffic in KB/s for
the server processes. We collect traffic data for several minutes
before incrementing the number of clients/peers and repeating
the process. The measurements for the P2P implementation
and the client-server implementation are done separately.

B. Results

Figure 3 shows how the mean server network I/O changes
as we increase the number of clients/peers. While the client-
server implementation scales exponentially as we add more
clients, the server traffic for our P2P implementation increases
linearly and very slowly.

This is because the P2P signalling server only sends periodic
heartbeats to each peer to check if a connection is still alive.
The data does not need to be sent through the client and we
shift the burden of reaching other peers to the peer. For few
peers (<30), modern devices can cope well with a completely
connected network. Beyond that, our optimised topologies
make a significant difference, which we aim to demonstrate
in future work.

VI. CONCLUSION AND FUTURE WORK

We have identified server costs and development overhead
as two deficiencies in multiplayer browser game development
that create a barrier to entry for independent game developers.
We have addressed these deficiencies by introducing a library
that takes advantage of modern HTML5 APIs to simplify P2P
communication for games and make it scalable. Finally, we
have empirically demonstrated the advantages that our library
provides by evaluating it against the standard approach.

While our library can be sufficient for low-throughput
networked browser games, there are some cases where games
might need unreliable, but higher-throughput, streaming com-
munication (cf. UDP). For this, our event-based system may
be unsuitable. A natural extension of our library would be
more bare-metal APIs for that type of data.

Currently, the signalling server orchestrates the topology of
the peer network, introducing some centralisation. We can
decentralise our system even further by instead employing
a more peer-centric method, where e.g. peers dynamically
reconnect to better peers over time, thus eventually converging
on optimal networks. This minimises points of failure.

Finally, we aim to extend the scalability of our system such
that it would be suitable for use in an MMO where a single
peer may need to communicate with a very large number of
peers can cannot be expected to broadcast data to all of them.
To do this requires further investigation and evaluation of peer
network topologies, however can yield significant cost benefits.

REFERENCES

[1] Game Developers Conference (GDC), “State of the game industry 2017,”
Tech. Rep., 2017.

[2] ——, “State of the game industry 2018,” Tech. Rep., 2018.
[3] R. Diaconu and J. Keller, “Kiwano: A scalable distributed infrastructure

for virtual worlds,” in 2013 International Conference on High Perfor-
mance Computing & Simulation (HPCS). IEEE, 2013, pp. 664–667.

[4] E. Buyukkaya, M. Abdallah, and R. Cavagna, “Vorogame: a hybrid
p2p architecture for massively multiplayer games,” in 2009 6th IEEE
Consumer Communications and Networking Conference. Ieee, 2009,
pp. 1–5.

[5] S. Kulkarni, “Badumna network suite: A decentralized network engine
for massively multiplayer online applications,” in 2009 IEEE Ninth
International Conference on Peer-to-Peer Computing. IEEE, 2009,
pp. 178–183.

[6] J. Keller and G. Simon, “Toward a peer-to-peer shared virtual reality,” in
Proceedings 22nd International Conference on Distributed Computing
Systems Workshops. IEEE, 2002, pp. 695–700.

[7] D. Frey, J. Royan, R. Piegay, A.-M. Kermarrec, E. Anceaume, and
F. Le Fessant, “Solipsis: A decentralized architecture for virtual environ-
ments,” in 1st International Workshop on Massively Multiuser Virtual
Environments, 2008.

[8] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: a scalable peer-to-peer
network for virtual environments,” IEEE Network, vol. 20, no. 4, pp.
22–31, 2006.

[9] S.-Y. Hu, C. Wu, E. Buyukkaya, C.-H. Chien, T.-H. Lin, M. Abdallah,
J.-R. Jiang, and K.-T. Chen, “A spatial publish subscribe overlay
for massively multiuser virtual environments,” in 2010 International
Conference on Electronics and Information Engineering, vol. 2. IEEE,
2010, pp. V2–314.

[10] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively
multiplayer online games: A survey,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, p. 9, 2013.

[11] J. S. Gilmore and H. A. Engelbrecht, “A survey of state persistency in
peer-to-peer massively multiplayer online games,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 5, pp. 818–834, 2011.

