
Route-based authorization and discovery for
personal data

Yousef Amar
Queen Mary University of London

y.amar@qmul.ac.uk

Hamed Haddadi
Queen Mary University of London

hamed.haddadi@qmul.ac.uk

Richard Mortier
Univeristy of Cambridge

richard.mortier@cl.cam.ac.uk

Abstract—When faced with systems in which third party
components need to advertise the availability of data they gather,
while other such components need to access it, solutions for
delegated authorisation and discovery APIs for interoperability
are needed. This work explores possible solutions, and converges
on a testable implementation.

I. INTRODUCTION

The rise of ubiquitous sensing via mobile and IoT devices
has led to a surge in generation and collection of personal
data. Meanwhile, concerns over privacy, trust, and security
are becoming an increasingly important theme as different
stakeholders attempt to take advantage of this data.

The Databox [2] – a set of networked services enabling
individuals to manage their data and to provide other parties
with controlled access to their data – seeks to remedy these
issues. Databox systems have to be privacy-preserving by
design, while allowing third-party processing and analytics to
run on a user’s personal data.

This poses unprecedented systems design challenges to
which the solutions are of immense value both inside and
outside the Databox paradigm. In such a system, a solution
for delegated authorisation and APIs for interoperability are
needed. This work aims to find these solutions and evaluate
them against alternatives.

II. RESEARCH CONTEXT

A Databox is a home IoT hub, that is supported by cloud
services. It makes diverse personal data sources (from online/-
social to IoT to mobile) accessible and provides runtime APIs
for interfacing with that data.

For both technical and privacy reasons, data processors are
incentivized to access and process all data within the sandbox
environment that is a Databox, and only emit results to the
outside world. By bringing the analytics to the data, rather
than the data to the analytics (in the cloud), Databox reduces
the risk of inferences – let alone privacy breaches – to an
exceptional degree.

Databox components run in isolated containers with limited,
encrypted communication. Next to components that perform
administerial functions, there are three core components.

Drivers, which can be developed by third parties, interface
with outside data sources and query data. These write data
into stores which provide a common API and access control
for other components to access this data. Stores are system

Driver

App

Reads from

Authorizes

Curates
Arbiter

Route
Permissions

Hypercat
Catalog

Database

Store
Hypercat
Catalog

Export
Service

Dashboard

Databox
Platform

Points toPopulates

Writes to

Pushes to

Fig. 1. Relationships between system and third party (red) components

components and launched alongside drivers. Finally, apps
(most of which will be written by third-party developers) can
be launched with permissions to access certain stores, and thus
certain data. Once these have finished their processing, they
may be allowed to emit limited data to the outside world
through an export service. Apps are packaged alongside a
manifest file which, among other metadata, lists the required
and optional permissions that an app may need.

III. RESEARCH QUESTIONS

It is necessary that within the Databox ecosystem, mech-
anisms for discovery, authorisation, and granular permission
management be in place. Within the scope of the Databox
ecosystem, we have two main problems, given that third-party
drivers may make arbitrary data sources available that provide
data in a variety of formats.

The first is how to dynamically catalogue ephemeral API
endpoints (for both data and other interaction) and the meta-
data associated with these, such as type, format, additional
granularity restrictions, and even custom vendor-specific meta-
data.

The second is how to manage and delegate the manage-
ment of permissions and access control to these individual
endpoints/items.

IV. IMPLEMENTATION

This section describes our current working implementation
of our system. It combines a route-based permissions scheme,
with a resource description standard (Hypercat [3]) and signed
tokens (Macaroons [1]) for delegated authorization. We call
the system component that performs these tasks the arbiter.



As a system that needs to be privacy preserving by design,
all permission and access are most restricted by default. Only
through user interaction should these permissions be able to
be made laxer. For components that are written by third-
party developers (highlighted red in figure 1), a number of
precautions are already taken, such as isolating these on
separate bridges, and having all source code undergo a rigid
scrutineering process.

There are three core features of our system for resource
description and authorization:

1) A root/top-level Hypercat catalogue is used to point to
store-hosted catalogs to facilitate discovery and metadata
retrieval by walking catalogs.

2) Distinct, granular macaroons are attached to any requests
made to store endpoints that allow stores to indepen-
dently determine whether a request is authorized or not.

3) Route-based permissions embedded in macaroons by the
arbiter automatically control what operations an app or
driver has been granted permission to execute, as long
as the operation can be expressed as a route. This can
be interfacing with data, or carrying out other functions
explored below.

The relations between system components in this context are
depicted in figure 1. The arbiter hosts a directory of all stores
in the form of a Hypercat catalog. Our route-based permissions
system applies to interfacing with Hypercat catalogs as well.

Macaroon caveats are conditions that must all be satisfied
for the token to be considered valid. As such, using these
would seem unsuitable for interleaving optional – or even
mutually exclusive – permissions expressed as conditions,
prima facie. This is however not the case, as individual caveats
can be anything, including whitelists.

We therefore treat a set of caveats as a “product of sums”, in
the sense that each caveat is a conjunct that is ANDed with all
other caveats, while individual caveats may define disjunctions
in the form of whitelists with each contained disjunct ORed.
Crucially, any combination of conditions can be expressed
in this manner, making our extension of macaroons flexible
enough to cover any expression of permissions.

The most critical caveat for our system of authorisation is
one such conjunction: the path caveat of a route. We define a
route simply as a combination of target, path, and method.
Paths are strings, or string whitelists, with some optional
formatting. They define accessible endpoints under a specified
method for a single target. Methods are HTTP verbs that are
generally mapped to CRUD operations, e.g. GET and POST
to read from and write to a store respectively.

Figure 2 is an example of a set of route caveats, to illustrate
the flexibility of route-based permissions in the context of
Databox APIs. In this case, we describe the extent of a bearer’s
permissions in a considerably detailed manner. For illustration
purposes, these are all encoded into one token; in practice, we
would separate the paths out one per token. For instance, the
bearer of a token encoded with the above caveats can:

• Access the (potentially censored or filtered) second-level
store catalogue of the target store

target = databox-mobile-store
method = GET
path = [
"/cat",
"/ws",
"/profile/kv",
"/accelerometer/ts/*",
"/gps/ts/latest",
"/logs/*/ts",
"/(sub|unsub)/light/ts/*"

]
time < 1490790593391

Fig. 2. An example of route caveats

• Connect to a target store’s WebSocket notification server
• Access a specific store-hosted JSON document with the

key “profile” in a key-value database
• Access all “accelerometer” time-series endpoints
• See only the latest readings from store data source “gps”
• Read any logs as long as they are for time-series data
• (Un)subscribe to notifications for any new “light” data
Any operation that can be made into a REST-ful endpoint

is automatically covered by this permissions system, without
any extra configuration, making it exceedingly future-proof.
As already alluded to, by separating routes, it is also directly
compatible with existing APIs and can map directly onto them.
Permissions can be made more granular by adding additional
general caveats (such as an expiry timestamp) or endpoint-
specific caveats (such as a bounds for time-series data, or a
destination whitelist for the export service).

V. EVALUATION AND FUTURE WORK

The question with the most practical importance to this
system is whether or not it scales well, as compared to other
techniques for discovery and authorization. We assert that our
model of distributed discovery and access control is the most
optimal, as the arbiter is only queried to mint new, short-lived
tokens or to list the root store catalogue.

We plan to perform empirical tests to measure general
performance metrics on typical hardware, identify any bottle-
necks, and compare these with other techniques. As more and
more apps, drivers, and stores are launched, another interesting
question surfaces: can one extend token expiry lifespans to
reduce load, and if so, at what cost in security, if any?

REFERENCES

[1] Arnar Birgisson et al. “Macaroons: Cookies with Con-
textual Caveats for Decentralized Authorization in the
Cloud.” In: NDSS. 2014.

[2] Amir Chaudhry et al. “Personal data: thinking inside the
box”. In: Proceedings of The Fifth Decennial Aarhus
Conference on Critical Alternatives. Aarhus University
Press. 2015, pp. 29–32.

[3] BSI PAS. “212:2016 Automatic resource discovery for
the Internet of Things - Specification”. In: British Stan-
dards Institution (2016).


	Introduction
	Research Context
	Research Questions
	Implementation
	Evaluation and Future Work

