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Abstract— Aquiring reliable depth maps is an essential pre-
requisite for accurate and incremental 3D reconstruction used
in a variety of robotics applications. Depth maps produced
by affordable Kinect-like cameras have become a de-facto
standard for indoor reconstruction and the driving force behind
the success of many algorithms. However, Kinect-like cameras
are less effective outdoors where one should rely on other
sensors. Often, we use a combination of a stereo camera
and lidar, however, process the acquired data in independent
pipelines which generally leads to sub-optimal performance
since both sensors suffer from different drawbacks. In this
paper, we propose a probabilistic model that efficiently exploits
complementarity between different depth-sensing modalities
for incremental dense scene reconstruction. Our model uses
a piecewise planarity prior assumption which is common in
both the indoor and outdoor scenes. We demonstrate the
effectiveness of our approach on the KITTI dataset, and provide
qualitative and quantitative results showing high-quality dense
reconstruction of a number of scenes.

I. INTRODUCTION

Aquiring reliable depth maps is an essential prerequisite for
accurate and incremental 3D reconstruction used in a variety
of robotics applications, including navigation [1], [2], object
recognition [3], [4], wearable and/or assistive technology [5],
and grasping [6]. Depth maps produced by affordable Kinect-
like cameras have become a de-facto standard for indoor
perception [7], [8] and the driving force behind the success
of many algorithms. However, Kinect-like cameras are less
effective outdoors where one should rely on other sensors.
With the advent of an increasingly wide selection of sensing
modalities (e.g. 2D/3D laser range finders, optical cameras,
stereo/depth cameras, flash ladars, radars, etc.), it is now
common to obtain multiple observations of a given scene;
a typical example are sensors mounted on (un)manned ve-
hicles [1]. Using observations from different modalities is
generally advantageous as they are complementary but at
the same time challenging since there often is no one-to-one
correspondence across modalities.

Let us consider, for instance, an optical camera and a lidar,
as illustrated in Fig. 1. The camera has a limited dynamic
range (Fig. 1, top) and many parts of perceived scene can
easilly be saturated (specular highlights, reflections, over-
exposure, . . . ). Stereo matching algorithms generally fail in
such areas where they are unable to predict any meaningful
depth, resulting in large holes in the dense depth maps
(Fig. 1, 3rd row). This reconstruction problem is ill-posed
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Fig. 1. One view of stereo camera with multiple reflections, specularities
and over-exposed zones (top), 3D point cloud captured by a Velodyne HDL-
64E laser scanner (2nd row), stereo reconstruction [9] (3rd row), and output
from our system (bottom), as seen from a moving platform on-the-fly.

even for images without any illumination artifacts due to
ambiguity in dense correspondence matching (textureless
areas, repetitive patterns, . . . ) and performance is usually
determined by a trade-off between accuracy and efficiency.
Fast algorithms typically use only (non-regularized) per-pixel
predictions with heuristic postprocessing reducing noise [15],
while accurate but slow methods rely on (semi)global opti-
mization enforcing smoothness and ordering constraints [10],
[11]. Moreover, most algorithms operate on a per-frame ba-
sis, which reduces their efficiency and temporal consistency.
In contrast, lidars (Fig. 1, 2nd row) are often able to sense
in areas in which RGB video information is not exploitable
and provide more accurate/reliable measurements. However,
lidars often have smaller field-of-view than cameras, depth
readings are limited to a certain maximum range and are
obtained at much slower temporal rate (except with most
expensive systems, which are not suitable for many applica-
tions).



Fig. 2. Overview of our system: (a) given a pair of cameras and (b) lidar, we (c) capture stereo images and (d) 3D point cloud, (e) generate an initial
set of pivots and (f) project them on a common map. Given the pivots within the current frustum and stereo images, we evaluate (g) unary potential and
piecewise planar term based on (h) the Delaunay triangulation of pivots and (i) oversegmentation over which we (j) define a pairwise CRF to (k) infer the
final solution.

Processing data from different modalities in independent
pipelines generally leads to sub-optimal performance. In
this paper, we propose a model that efficiently exploits
complementarity between different depth-sensing modalities
for incremental dense scene reconstruction. For ease of
exposition, we demonstrate our method on stereo camera
and lidar measurements, however the method is general
and can accomodate other sensors (e.g. radar for obstacle
detection, etc.). We directly integrate the lidar data into stereo
reconstruction algorithm to predict accurate depth maps and
we show that the superior results can be obtained even with
second-class, cheap sensors (Fig. 1, bottom).

At the core of our system is a pairwise conditional random
field (CRF) that captures interactions between the pixels and
efficiently combines information from the stereo camera and
lidar (Fig. 2 (k)). To this end, we assume that the sparse yet
trustworthy lidar 3D measurements and 3D points generated
by robustly matched and triangulated sparse 2D keypoints
(Fig. 2 (e)), that we call pivots, are accurate enough to
provide partial prior knowledge about the scene. To exploit
this prior knowledge in our model, we drastically reduce
the unary costs attached to these points, so that the optimal
depth assignments are attracted towards pivots’ depth, and
pivots guide dense matching. Our unary potentials (Fig. 2
(g)) are based on dense matching of 2D features along the
epipolar lines and a piecewise-planar prior defined by various
groupings of pivots (Fig. 2 (h, i)). Such prior typically models
only small scene fragments and/or does not respect object
boundaries well [9]. Thus, we define the groupings of pivots
over a multiscale hierarchy of oversegmented regions that
provide knowledge about potential object boundaries and
model planarity over larger surfaces such as the whole road
region or table top. Pivots also help to disambiguate dense
matching by constraining the searched range which results in
more confident unary predictions and their faster evaluation.
Our pairwise terms propagate information into uncertain
(e.g. saturated) areas and enforce smoothness among the
neighbouring pixels (including the lidar data). Note that
we do not introduce any hard constraints forcing variables
at pivots’ coordinates to take the estimated depth, hence,

this leaves the chance for recovery if the pivot is assigned
incorrect measurement.

Further, we project the pivots on a common map (Fig. 2
(f)) to maintain the temporal consistency and not to discard
any measurements. Hence all measured data are available
to the algorithm on request (and not just the latest sensor
readings). To maintain the computational and memory com-
plexity, we use a sparse hash-table-driven data structures that
ignore unoccupied space and swap/stream map data between
device and host memories as needed to fit the data into GPU
memory and process only the data within a current frustum
(as in [12]).

In order to efficiently infer the approximate maximum
posterior marginal (MPM) solution [13], we use a mean-field
inference technique that refines the marginals of a node with
a bilateral filter that is suitable for parallel implementation.
This allows us to run inference each frame (as only a
few mean-field update iterations are required), which is of
utmost importance in most of the robotics settings where
output is required at real-time or interactive rates. The
system outputs a per-pixel probability distribution instead of
a single label, which is desirable in robotics as it allows
probabilistic interpretation in other subsystems. All parts of
our system are trivially parallelizable, hence suitable for GPU
implementation.

It should be noted, that our approach is not specific to
this application, can be used with multiple sensors and/or
other modalities, naturally accomodates other priors and can
be extended to handle other tasks such as semantic and/or
motion segmentation, etc.

II. RELATED WORK

Dense deth map estimation from stereo images is one of the
most studied problems in computer vision [14]. In general,
fast methods usually treat each pixel independently, capture
context only in a very small area and smoothness is often
achieved through heuristical postprocessing [15]. Algorithms
that rely on (semi)global optimization capture the struc-
ture [9], [16], encode higher order constraints (e.g. to model
slanted planes) [10] and use segmentation [11], [17], [18].
However, these methods do not exploit complementarity and



partial knowledge about the scene obtained from different
modalities. Torr and Criminisi [19] proposed pivoted dy-
namic programming in rectified image pairs, which attempts
to attract the optimal disparity path along a scanline towards
the prior disparity at matched keypoints.

All the above-mentioned methods process data on per-
frame basis resulting in temporally inconsistent prediction.
It has been shown, that maintaining pivots across the video
sequence improves temporal consistency of stereo algo-
rithms [5], however their approach assumes a user in the
loop (works only with laser path forming a hull).

Other approaches focus on inpainting [20], [21] of the
Kinect depth maps, however, they require fairly dense depth
from active sensors. Diebel and Thrun [22] proposed an MRF
model for upsampling of laser measurements with enforced
smoothness across areas with constant color. Though their
method uses both the laser and color data, they do not use
planarity prior as we do in proposed method. Further, they
do not consider motion while processing depth data. As we
show in the experiment section, both these two techniques are
necessary for high accuracy and efficiency. Dolson et al. [23]
proposed filtering framework for dynamic scenes. Badino et
al. [24] showed how to integrate sparse lidar measurement
directly into disparity estimation. Though this method also
tries to solve problem similar to our there are some key
differences which are necessary for achieving high accuracy
efficiently. First we propose to use a region based planar
prior which is necessary to model planarity over large regions
such as road, table-top etc. Further we solve the energy
minimization problem in a mean-field framework which is
naturally parallizable compared to the dynamic programming
based method of Badino et al. [24].

On application side, Munoz et al. [25] proposed 2D-
3D (camera-lidar) co-inference for semantic segmentation.
Held et al. [26] combined lidar and optical camera for object
tracking, Premebida et al. [27] combined the same modalities
for pedestrian detection and Arnab et al. [28] combined
audio-visual cues for semantic segmentation.

III. DENSE MULTI-MODAL DEPTH-MAP ESTIMATION

Our system exploits partial prior knowledge about the scene
provided by relatively sparse but accurate 3D measurements,
called pivots. Hence, the first step is to project the lidar
measurements into the camera coordinate system. Since
lidars often have smaller field-of-view than cameras, we aug-
ment these points by robustly matched keypoints. Next, we
use dense matching, and piecewise planar prior to evaluate
the CRF potentials and run the inference. The following
subsections assume synchronized data and process them per-
frame. We relax this assumption in III-G.

A. Setting the stage

In our setup, we assume that all sensors are calibrated.
In case of cameras, this comprises of: 1) intrinsic camera
calibration to compute the geometric parameters of each
camera lens (focal length, principal point, radial and tangen-
tial distortion); 2) stereo calibration to compute the geometric

Fig. 3. Pivots – gray area contains lidar measurements, outside this region
we perform sparse feature matching.

relationship between the two cameras, expressed as a rotation
matrix and a translation vector; 3) stereo rectification to
correct the camera image planes such that they are scanline-
aligned and disparity computation is simplified. Without loss
of generality, the reference camera coordinate system has
origin in the top-left corner of the left camera (more details
in [29]).

The laser scanner is registered with respect to the reference
camera coordinate system. In this section, we also assume
the cameras and laser scanner are synchronized and data are
“untwisted” in case of spinning lidars. The optimization is
carried out in the disparity image space; with conversion
to depth zi = bf/di with baseline b, focal lenght f and
disparity at i-th pixel di.

B. Pivots

In order to disambiguate dense matching, we first define a set
P of confident 3D points capturing partial prior knowledge
about the scene, so called pivots. Each pivot p = {xp, yp, dp}
is represented by coordinates {xp, yp} ∈ N2 and disparity
dp ∈ N defining the displacement of the corresponding
matching point along the epipolar line in the right image.

In our case, a first natural choice of pivots is the set
P0 consisting of all lidar measurements projected into the
image plane as we assume relatively high precision of laser
scanning. However, it is often the case that lidars have
smaller field-of-view than cameras (Fig. 1 (b)), do not return
any measurement on areas subject to reflections or located
past the maximum range limit. Hence, we augment the initial
set of pivots by a set of robustly matched keypoints K,
i.e. P = P0∪K. See section IV-A for implementation details.

C. Model

We define a random field over random variables X =
{X1, ..., XN}, conditioned on data I = {I(l), I(r),P} con-
sisting of a pair of 2D images I(l), I(r) and pivots P . We
assume that each discrete random variable Xi is associated
with a pixel i ∈ N = {1...N} in the image of the reference
camera (left) and takes a label di ∈ N from an ordered
finite disparity label set D = {d1, ..., dD, dD+1}. A dummy
label dD+1 with some constant cost is added to indicate
invalid depth (outliers/occlusions). We formulate the problem
of assigning disparity labels to the pixels as one of solving
a densely-connected, pairwise Conditional Random Field



(CRF)

P (X|I) =
1

Z(I)
exp(−E(X|I))

E(X|I) =
∑
i∈N

ψu(Xi) +
∑

i<j∈N
ψp(Xi, Xj),

(1)

in which E(X|I) is the energy associated with a con-
figuration X = (X1 . . . XN ), conditioned on the data I,
Z(I) =

∑
X′ exp(−E(X′|I)) is the (data-dependent) parti-

tion function and ψu(·) and ψp(·, ·) are the unary potential
and pairwise potential functions, respectively, both implicitly
conditioned on the data I. This model is not constrained to
our particular application and can be extended to, e.g. joint
depth prediction and semantic or motion segmentation, etc.

D. Unary potential

Our unary potential function is inspired by guided dense
stereo matching proposed by Torr and Criminisi [19] and
large-scale stereo estimation algorithm of Geiger et al. [9]
and consists of two terms, (1) feature matching and (2)
piecewise-planar term that we included directly into the
unary potential function.

Let fi ∈ RR be an image dependent feature vector (pixel
intensity or patch descriptor) for pixel i = {xi, yi} ∈ N2 and
superscripts (l),(r) denote left and right images, respectively.

1) Feature Matching: We express the contribution of the
data term as a constrained Laplace distribution capturing cost
for 1D dense feature matching along the epipolar line

ψd(·|di,F) ∝

{
exp

(
−β‖f (l)

i − f
(r)
i−di‖1

)
, ∀di ∈ D̄i

0, otherwise
(2)

where D̄i ⊆ D (defined below) is a subset of disparity levels
that for each pixel i reduces the searched range and implicitly
introduces the epipolar constraint y(l)

i = y
(r)
i .

2) Piecewise-planar term: We define our prior exploiting
partial knowledge about scene provided by pivots P to be
proportional to a sampled Gaussian

ψp(·|di,P) ∝

{
exp

(
− [di−µ(τt,i)]

2)
2σ2

)
, if di ∈ D̄i

0, otherwise
(3)

where σ are constants set by cross-validation determining
our belief into plane τ defined by lidar measurements (σl),
robustly matched keypoints (σk) or both (σlk), respectively,
and D̄i = {|di − µ(·)| < 3σ ∨ di ∈ NP } is a subset
of disparity levels for which the equation is evaluated. We
evaluate only disparities within 3σ from the mean to gain
speed. The condition di ∈ NP enables the prior to locally
extend its range to better handle disparity discontinuities in
places where the linearity assumption might be violated. We
define µ(·) to be a piecewise linear function

µ(τt, f
(l)
i ) = atxi + btyi + ct (4)

interpolating the subsets T = {τ1, ..., τT } of pivots in P . We
use two types of partitioning of pivots set P:

Delaunay triangulation: it partitions set of pivots P into
a set of non-overlapping triangles TD ⊆ T , i.e. ∪t∈TDτt =
P , hence captures a coarse estimate of a 3D structure. For
each triangle τt, we form a linear system of equations and
solve for the plane parameters {at, bt, ct} by SVD. Hence the
mode µ of the proposed distribution is a linear combination
of the pivots in triangle τt.

Oversegmentation: The Delaunay triangulation parti-
tions pivots into non-overlapping triangles, however, such
triangles may cover multiple objects. Also, if the pivots are
imprecise (often happens with real-world measurements),
such prior may result into e.g. non-coplanar neighbouring
planes on a flat surface. We overcome both issues by
partitioning pivots P into sets TO ⊆ T defined by object-
aware segments – these are often sensitive to potential object
boundaries and often contain many pivots, hence “regularize”
priors defined by non-overlapping triangles.

A natural question is how to define grouping of image
pixels. In contrast to object recognition, even if we had a
method that could perfectly segment the objects from each
other, it would not be enough for disparity estimation, since
a single object often consists of many shapes/parts. Hence
we use a multi-scale over-segmentation (details in sec. IV-
A) to define such regions and RANSAC with least squares
refinement to robustly fit a plane (i.e. estimate {at, bt, ct})
into a subset of pivots associated with each segment τt ∈ TO.

3) Unary potential function: Combining feature matching
term (Eq. 2) and piecewise-planar term (Eq. 3) together,
taking the negative logarithm and introducing a “discount”
function Ω for pivots yield

ψu(·) = Ωi

β‖f (l)
i − f

(r)
i−di‖1 +

∑
τt⊆I[i∈T ]

[di − µ(τt, i)]
2

2σ2

 (5)

where I[·] is an indicator function returning all subsets τt ⊆
T that contain pixel {xi, yi}, and discount function

Ωi =

{
ω, if {xi, yi, di} = p ∈ P
1, otherwise

(6)

drastically reduces the cost of configurations assigning mea-
sured depth at pivots p ∈ P by some constant ω. Using
different constants ω for pivots obtained by lidar (ωl) and
robust keypoint matching (ωk) allows us to model our belief
into precision of these measurements.

Note, that we do not introduce any hard constraints
forcing variables at pivots’ coordinates to take the measured
disparity, hence, this leaves the chance for recovery if pivot
has assigned incorrect disparity. Also, the piecewise planar
term can be replaced by a set of functions with Minimum
Description Lenght (MDL) prior to better model non-planar
surfaces such as conics, etc.

E. Pairwise potentials

The pairwise potential function ψp(·, ·) enforces consistency
over pairs of random variables and thus generally leads to a
smooth output. In our application, we use a weighted mixture



Fig. 4. Piecewise planar prior defined on regions obtained with Delaunay triangulation (top) and multiscale over-segmentation, here we show the 3rd
level (bottom).

of Gaussian kernels (with unit covariance matrix) that depend
on appearance features

ψij(d, d
′) = ∆(d, d′)

M∑
m=1

w(m)k(m)(f̄
(m)
i , f̄

(m)
j ) (7)

where weights associated with m-th kernel w(m) are obtained
by cross-validation, f̄ (m)

i , f̄
(m)
j are the 2D features extracted

from image data I(l) at the ith and jth pixels (respectively)
and ∆(d, d′) is the compatibility function. We use a combi-
nation of the Gaussian kernel

k(1)(f̄
(1)
i , f̄

(1)
j ) = w(1) exp

(
−‖ci − cj‖22

2θγ

)
(8)

removing small isolated areas and bilateral kernel

k(2)(f̄
(2)
i , f̄

(2)
j ) = w(2) exp

(
−‖ci − cj‖22

2θα
−
‖I(l)
i − I

(l)
j ‖22

2θβ

)
(9)

enforcing neighbouring pixels with similar appearance to
take the same label. Parameters θ controls the spatial extent
of the kernel, c = {xi, yi} are pixel cordinates and I is color.
This form of potential introduces a small fronto-parallel
bias, which can be overcome by higher-order potentials.
We decided not to use higher-orders, as it would make the
inference slower; instead we directly included the “slanted”
areas prior directly into our unary potentials. We use the
standard truncated L1 or L2 compatibility functions

∆(d, d′) = min(‖d− d′‖Γ, α) (10)

where ‖ · ‖Γ is the L1 or L2 norm, respectively, and α is the
clipping parameter.

F. Efficient inference

One of the most popular approaches for multi-label CRF
inference has been graph-cuts based α-expansion [30], which
finds the maximum a posteriori (MAP) solution. However,
graph-cuts leads to slow inference and is not easily parallelis-
able. Given the form of the energy function defined above,
we follow the mean-field based optimization method, that
has been shown to be very efficient for pairwise CRFs in 2D
image segmentation [13].

In the mean-field framework, we approximate the true
distribution P (X) by a family of Q(X) distributions that
factorize as the product of all components’ marginals (com-
ponents are independent) Q(X) =

∏
iQi(Xi). The mean-

field inference then attempts to minimize the KL-divergence
DKL(Q||P ) between the tractable distribution Q and true dis-
tribution P . Under this assumption, the fixed point solution
of the KL-divergence, under constraint that Q(X) and Q(Xi)
are valid distributions, leads to the iterative mean-field update
(refer to [31] for more details):

Qi(Xi = d) =
1

Zi
exp{−ψu(Xi) −∑

d′∈D̄i

∑
j 6=i

Qj(Xj = d′)ψp(Xi, Xj)}
(11)

where Zi =
∑
Xi=d∈D̄i

exp{−ψu(Xi)−
∑
d′∈D̄i

∑
j 6=iQj(

Xj = d′)ψp(Xi, Xj)} is a constant normalizing the marginal
at pixel i. The complexity of the mean-field update isO(N2).

It has been shown, that the time-consuming pairwise
update of densely connected CRFs can be efficiently approx-
imated by a filter-based variant. Such approach is particularly
attractive for tasks with a small number of labels and a
constant label over large areas as it allows to capture long-
range interactions (e.g. object segmentation). However, for
disparity estimation, we often have large state space and
neighbouring pixels tend to take different labels (typically
slanted areas). Hence we further exploit partial prior knowl-
edge about the scene, and evaluate the pairwise updates
only for labels within the range defined by prior (i.e. states
with evaluated unary potential) plus some small slack λs
(e.g. 5 disparity labels) allowing to handle imprecise pivots,
i.e. d′ ∈ (D ∪ λs). The algorithm is inherently parallel, runs
for a fixed number of iterations, and the MPM solution is
extracted by choosing xi ∈ argmaxdQi(xi = d) from soft
predictions at the final iteration.

G. Temporal Sequences of Images

Often, robotic platforms perceive a gradually changing
scene with multiple sensors operating at different rates
(e.g. cameras at 25Hz, lidar at 15Hz). So far, our system has
required synchronized sensors and processed only the latest



batch of data. Discarding all previous measurements results
into temporaly inconsistent predictions (even for static scenes
due to noise) and need for all sensors to operate at rate of
the slowest sensor.

It has been shown, that providing pivots consistent over
the temporal sequence stabilizes the predicted disparity [5].
To this end, we replace per-frame keypoint matching by
more robust temporal matching, i.e. the per-frame robustly
matched features are propagated over time with mutual
exclusive check, and project both, the lidar readings and
matched keypoints on a common map. Consequently, all the
measurements are available to the algorithm on a request and
we do not discard any. The only assumption is, that the 6DoF
pose is available (can be obtained with IMU/VO). Our map
is represented by a sparse hash-table-driven data structure
that ignores unoccupied space. Further, we swap/stream map
data between device and host memories as needed to fit the
data into GPU memory and process only the data within a
current frustum [12], [2]. This results into more stable set of
keypoints over the temporal sequence of images.

IV. EXPERIMENTS

A. Implementation details

In this section, we provide implementation details of our
approach. Pivots from different modalities can be defined and
modeled in numerous ways. Our implementation relies on a
simple yet reasonable assumption that lidar measurements
are generally more accurate than feature matching. Hence,
we perform sparse feature matching only in areas that are not
covered by lidar measurements (such areas are discovered by
simple dilation of lidar measurements). Though a variety of
fast feature detectors and descriptors has been proposed [32],
we follow [9] who showed that matching of the points
sampled on a regular grid using the L1 distance between
the descriptors consisting of concatenated horizontal and
vertical Sobel responses is both, fast and stable. To impose no
restrictions on the disparities, we allow a large disparity 1D
search range along the epipolar line. Non-stable keypoints
are eliminated by mutual exclusive check [33] and the best
to the second best match ratio. We also remove all keypoints
which exhibit disparity values dissimilar from all surrounding
support points. For videos, we use the Fovis visual odometry
library [34] to estimate 6DoF pose and per-frame feature
matching (for pivots) is replaced by features tracked by Fovis
to increase temporal consistency and robustness.

In principle, our framework can be used with any super-
pixel grouping algorithm (k-means, mean-shift, slic, . . . ). Our
implementation uses multi-scale (4 levels) oversegmentation
by Felzenswalb and Huttenlocker [35] since it is fast and it
is easy to control size of segments.

B. Dataset and baselines

We demonstrate the effectiveness of our reconstruction
from different modalities for both per-frame and video se-
quences. We evaluate our system on the KITTI dataset [36],
which contains a variety of outdoor sequences, including a
city, road and campus. All sequences were captured at a
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Fig. 5. Quantitative results: RMSE linear (top), RMSE log (bottom). See
text for details.

resolution of 1241 × 376 pixels using stereo cameras (with
baseline 0.54m) mounted on the roof of a car. The cameras
were calibrated and captured images rectified. The car was
also equipped with a spinning Velodyne HDL-64E laser
scanner (LIDAR). All sensors were synchronized, the dataset
was captured at 10Hz and cameras triggered when lidar was
rotated forward.

The KITTI dataset is very challenging since it contains
numerous changes in lighting conditions resulting in tex-
tureless areas, repetitive patterns (road, facades, . . . ), etc.
We report both, qualitative and quantitative results evalu-
ated on sequences exhibiting above-mentioned challenging
conditions and show substantial improvement with respect
to our baselines. The first baseline is the disparity matching
algorithm (from passive stereo cameras) by Geiger et al. [9]
since part of our unary potentials follow this approach.
Obviously, comparison with respect to the algorithm relying
purely on data from cameras is not fair as this baseline use
less data. Hence, the second baseline is a modified version
that uses exactly the same set of support points as our
approach.

C. Qualitative results

First, we show some qualitative results for our algorithm.
In Fig. 6, we highlight the ability of our approach not
only to estimate disparity in saturated zones (e.g. filled



Fig. 6. Qualitative results - left: Geiger et al. [9], right: proposed. Cyclic colormap to enhance details.

holes in disparity images), but also to improve accuracy in
areas with repetitive patterns (road surfaces under the cars,
etc) and also to accurately recover thinner objects such as
walking pedestrian. Note in particular that with lidar data,
and segment-based prior, the discontinuity in depth better
follows the object boudaries.

D. Quantitative results

Next, we quantitatively evaluate the accuracy of our ap-
proach. We assess the overall performance by linear and
logarithmic root mean square error (RMSE) that are standard
metrics defined as RMSElinear =

√
1
N

∑
d∈N ‖di − d∗i ‖2 and

RMSElog =
√

1
N

∑
d∈N ‖ log di − log d∗i ‖2, where di is

the predicted disparity and d∗i is the ground-truth. In spirit
of disparity evaluation on the KITTI dataset, we use the lidar

measurements as a ground-truth (as we do not have any other,
more accurate and dense data). It is natural, that our approach
performs well in these point measurements. However, our
goal is to demonstrate that competitive performance can be
achieved with worse sensors. Hence we reduce the number
of lidar measurements that we use as pivots, i.e. we use
each 2nd, 5th, 10th, etc. point and evaluate with respect to
the unused points. Our approach significantly outperforms
both baselines (elas [9], elas+lidar) and inference helps to get
better results (unary vs full), see Fig. 5 (x axis denotes how
many points we preserve from lidar measurements, e.g. 10
means that we keep each 10th point). The error increases
very slowly, which suggests that even with significantly
worse sensors we are able to maintain the desired precision
– 18000 lidar measurements can be decreased to only 900
points without significant drop in performance.



V. DISCUSSION

Despite very encouraging results, our system is not with-
out limitations. In particular, processing temporal sequences
assumes the mapped pivots correspond to the static parts of a
scene. Though we have not included it into our system, the
pivots corresponding to moving objects can be marked by
motion or semantic segmentation [2] (which can potentially
be included into our energy function) and excluded from
mapping. Also, the quality of estimated depth on temporal
sequences depends on estimated pose, however, this is not a
limitation in practice as we anyway need accurate pose for
3D reconstruction.

For ease of exposition, we have not used any probabilistic
model of lidar and/or camera taking sensor noise, resolution,
etc. into account, however, both can be easilly included into
our energy function.

VI. CONCLUSION

In this paper, we have proposed a probabilistic model
that efficiently exploits complementarity between different
depth-sensing modalities for online dense scene reconstruc-
tion. Our model uses planarity prior which is common in
both the indoor and outdoor scenes. We demonstrated the
effectiveness of our approach on the KITTI dataset, and
provide qualitative and quantitative results showing high-
quality dense reconstruction and labeling of a number of
scenes. More importantly, we show that we are able to get
very high quality reconstruction using colour data and only a
few hundreds of lidar points. We are planning to incorporate
higher order terms to enforce slanted planarity priors as part
of future work.
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